Tuesday, 24 November 2020

Line & It's Equations

                                    

          Line :- 

    A line is one dimensional figure which has                 length but no breath.

         
        
           FIG. RayOB & RayOA joined together.
                             
It is also defined as a combination of two rays 
joined together at a common vertex but in 
opposite direction.
Both the side it can be extended infinitely.

There are are different  types of lines like straight line, vertical line, thick line , thin line, horizontal line , zigzag line, curved line , spiral line ,diagonal line , skew line ,slant/oblique line etc.




                       EQUATION OF LINE

There are two form of equation of  line ...
  1) ax+by=0  (Line passes through origin)
  2) ax+by+c=0 (Line does not pass through                                                                            origin)

TYPES OF EQUATION OF LINE : -

1)                 TWO POINT FORM
When Two points A(x₁,y₁) & B(x₂, y₂
of a line is known then the equation of line 
is given by ...

       y-y₁       y₁- y₂
       ------ =  --------
       x-x₁       x₁-x₂

2)             Slope Point form :
    When a point A(x₁,y₁) & slope (m) 
    of a line is known  then the equation 
    of a line is given by ..

        y-y₁=m(x-x₁)

3)   Double Intercept form  :
      When two intercept i.e 
       x-intercept= a
   & y-intercept= b 
       of a line is known then the equation 
       of a line is given by 
        x/a +y/b  =1

4)     SLOPE - INTERCEPT FORM :
    When slope (m) & Y-intercept-c 
       of a line is known then the   equation 
       of a line is given by 
                y=mx+c

EQUATIONS OF AXES

     1) Equation of x-axis is y=0
       2) Equation of y-axis is x=0

Note:
 
   1)If a line is perpendicular to x-axis then 
       it's equation is given by  x= ± a

2) If a line is perpendicular to y-axis then  
     it's equation is given by  y= ± b
                      


TO FIND SLOPE  :

To find slope of a line there are three formulae

1) If Ө is the angle made by the line with the + direction of x-axis then the slope of the line is given by ...
                slope = TanӨ
 
2) When A(x₁,y₁) & B(x₂, y₂) two points of two line s are known then slope is given by

                        y₂-y₁
    slope =    -----------
                        x₂-x₁

3)When ax+by+c=0 is the equation of a given line then the slope is given by

      slope = -a / b

TO FIND SLOPE OF AXES

1) Slope of x-axis  = 0
2) Slope of y-axis  = not defined =∞

* * IF m₁ & m₂ slopes of two lines are then
 
1) If two lines are parallel then 
                  m₁ m₂
2) If two lines are perpendicular then  
                 m₁.m₂= -1
3) If two lines are intersecting then angle between them is given by

  TanӨ=m₁ - m₂/ 1 m₁m₂|
  
* If a point is on x- axis then it's 
    coordinate is given by 
                (± , 0)  

* If a point is on y-axis then it's 
    coordinate is given by 
                ( 0, ± b)

*If u=a₁x+b₁y+c₁=0 & 
      v=a₂x+b₂y+c₂=0 
  are two lines then equation of a 
  line passing through the 
  intersection of these two line is given by
                            u+kv=0

*Joint equation of  two line is given by
                        u.v=0
* Joint Equation / Homogenous equation 
    of pair of line passing through origin is 
    given by 
                     ax²+2hxy+by²=0

* General equation of pair of line is given by
  ax²+2hxy+by²+2gx+2fy+c=0

* If the two line are perpendicular then
                a+b=0

*If two line are parallel then 
                h²-ab=0  
* If the two lines are intersecting then
the angle between them is given by

TanӨ= | 2√ h²-ab/a+b |    


**Shortest Distance between a Point  P(x₁,y₁)  
    & a point M on the line ax+by+c=0 is 
    given by 
      PM = | ax₁+by₁+c₁/ a²+b²|        


***
In 3-Dimension  :

If a line makes an angle 𝝰 ,𝞫 &𝜸 
with the + direction of x-axis,y-axis
 &z-axis respectively.
Then cos 𝝰 ,cos 𝞫 , & cos𝜸 are 
known as Direction cosine of the line.
It is also known as dc's.
 also cos𝝰=l  ,cos𝞫=m & cos𝜸=n

**cos²𝝰 +cos²𝞫 +cos²𝜸 = 1
i.e.   l²+m²+n² =1

* If  a/cos𝝰=b/cos𝞫=c/cos𝜸 then a, b, c 
are known as direction ratios. 
It's is denoted by dr's.

*If A(x₁,y₁,z₁) & B(x₂, y₂,z₂) are two point
then it's direction ratio is given by 

a=x₂-x₁ , b=y₂-y₁,c =z-z

*The Vector equation of the line passing through A(ā)& parallel to Б is given by 
  r=ā+⋋b

* Cartesian equations of the line passing through A(x₁,y₁,z₁) & having direction 
ratio a, b & c are 

          x-x₁/a   = y-y₁/b    =z-z₁/c

No comments:

Post a Comment

POPULAR POST